Gradient Boosting Machines (GBMs) in the Age of LLMs and ChatGPT

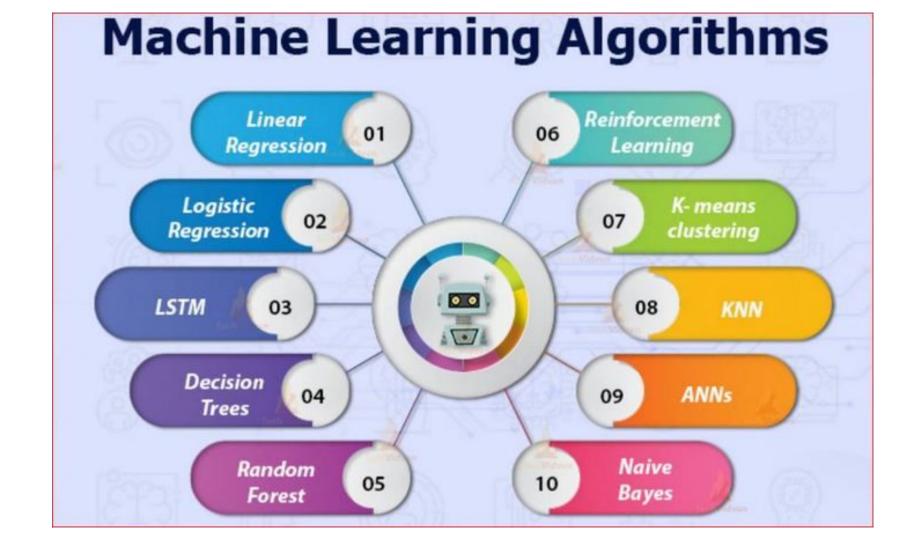
Szilard Pafka, PhD
Chief Scientist, Epoch

R+AI Conference Nov 2025, Online

Szilard Pafka

@SzilardPafka

physics PhD, chief (data) scientist, meetup organizer, (visiting) professor, machine learning benchmarks


The Woodlands, Texas
 ✓ szilard.github.io/aboutme/
 Joined February 2014

224 Following 4,589 Followers

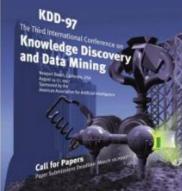
Disclaimer:
I am not representing my employer (Epoch) in this talk

results etc. mentioned in this talk

I cannot confirm nor deny if Epoch is using any of the methods, tools,

KDD-2001 San Francisco, CA August 26-29

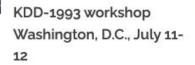
More information


KDD-2002 Edmonton, AB July 23-26

More information

KDD-1996 Portland, OR August 2-4

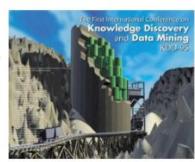
More information


KDD-1997 Newport Beach, CA August 14-17

More information

KDD-1998 New York, NY August 27-31

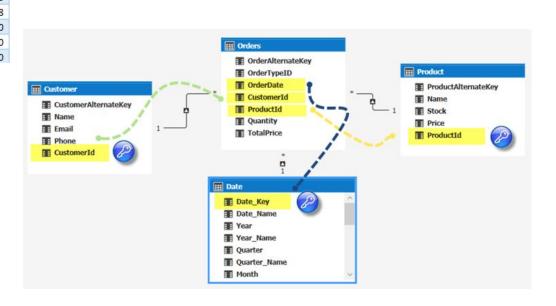
More information


More information

KDD-1989 workshop Detroit, MI, August 20

KDD-2000 Boston, MA August 20-23

More information



KDD-1995 Montreal, QC August 20-21

More information

M	Α	В	С	D	E	F
1	Country -	Salesperson 💌	Order Date 💌	OrderID 💌	Units 💌	Order Amount
2	USA	Fuller	1/01/2011	10392	13	1,440.00
3	UK	Gloucester	2/01/2011	10397	17	716.72
4	UK	Bromley	2/01/2011	10771	18	344.00
5	USA	Finchley	3/01/2011	10393	16	2,556.95
6	USA	Finchley	3/01/2011	10394	10	442.00
7	UK	Gillingham	3/01/2011	10395	9	2,122.92
8	USA	Finchley	6/01/2011	10396	7	1,903.80
9	USA	Callahan	8/01/2011	10399	17	1,765.60
10	USA	Fuller	8/01/2011	10404	7	1,591.25
11	USA	Fuller	9/01/2011	10398	11	2,505.60
12	USA	Coghill	9/01/2011	10403	18	855.01
13	USA	Finchley	10/01/2011	10401	7	3,868.60
14	USA	Callahan	10/01/2011	10402	11	2,713.50
15	UK	Rayleigh	13/01/2011	10406	15	1,830.78
16	USA	Callahan	14/01/2011	10408	10	1,622.40
17	USA	Farnham	14/01/2011	10409	19	319.20
18	USA	Farnham	15/01/2011	10410	16	802.00

À	Α	В	С	D	E	F
1	Country -	Salesperson 💌	Order Date	OrderID 💌	Units 💌	Order Amount
2	USA	Fuller	1/01/2011	10392	13	1,440.00
3	UK	Gloucester	2/01/2011	10397	17	716.72
4	UK	Bromley	2/01/2011	10771	18	344.00
5	USA	Finchley	3/01/2011	10393	16	2,556.95
6	USA	Finchley	3/01/2011	10394	10	442.00
7	UK	Gillingham	3/01/2011	10395	9	2,122.92
8	USA	Finchley	6/01/2011	10396	7	1,903.80
9	USA	Callahan	8/01/2011	10399	17	1,765.60
10	USA	Fuller	8/01/2011	10404	7	1,591.25
11	USA	Fuller	9/01/2011	10398	11	2,505.60
12	USA	Coghill	9/01/2011	10403	18	855.01
13	USA	Finchley	10/01/2011	10401	7	3,868.60
14	USA	Callahan	10/01/2011	10402	11	2,713.50
15	UK	Rayleigh	13/01/2011	10406	15	1,830.78
16	USA	Callahan	14/01/2011	10408	10	1,622.40
17	USA	Farnham	14/01/2011	10409	19	319.20
18	USA	Farnham	15/01/2011	10410	16	802.00

best boosting AUC? #15

szilard opened on May 31, 2015

@tqchen @hetong007
I'm trying to get a good AUC with boosting

best boosting AUC? #15

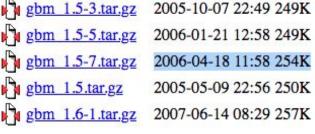
szilard opened on May 31, 2015

 $\underline{\text{@hetong007}} \text{ I'm trying to get a good AUC with boosting}$

- 2
- 1.9k stars
- 145 watching
- 앟 332 forks

AVG	1st	2N
RF	0.727	0.20
ANN	0.053	0.17
AND THE PROPERTY OF THE PARTY O	1 100	1000
		0.22
SVM	0.043	0.19
LR	0.089	0.13
BAGDT	0.002	0.01
		0.0-
	0.0-0	0.04
BSTST	0.004	0.00
PRC	0	
NB	0	
	RF ANN BSTDT SVM LR BAGDT KNN BSTST PRC	RF 0.727 ANN 0.053 BSTDT 0.059 SVM 0.043 LR 0.089 BAGDT 0.002 KNN 0.023 BSTST 0.004 PRC 0

 ${\bf An\ Empirical\ Comparison\ of\ Supervised\ Learning\ Algorithms}$


http://www.cs.cornell.edu/~alexn/papers/empirical_icml06.pdf

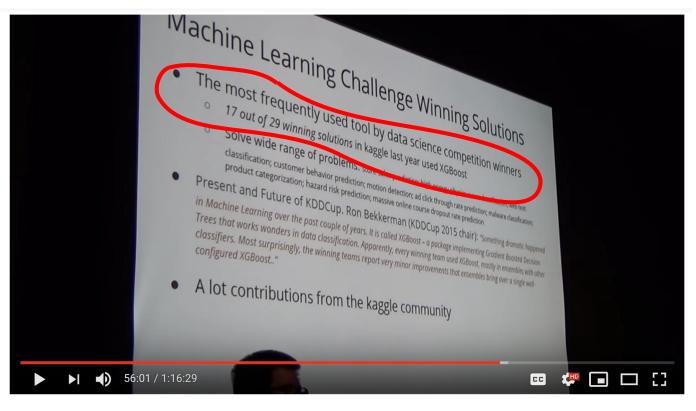
An Empirical Evaluation of Supervised Learning in High Dimensions

http://lowrank.net/nikos/pubs/empirical.pdf

MODEL	1st	2ND
BST-DT RF BAG-DT SVM ANN KNN BST-STMP DT LOGREG NB	0.580 0.390 0.030 0.000 0.000 0.000 0.000 0.000 0.000	0.228 0.525 0.232 0.008 0.007 0.000 0.000 0.000 0.000

		-
AVG	1st	2ND
RF	0.727	0.207
ANN	0.053	0.172
BSTDT	0.059	0.228
SVM	0.043	0.195
LR	0.089	0.132
BAGDT	0.002	0.012
KNN	0.023	0.045
BSTST	0.004	0.009
PRC	0	0
NB	0	0

An Empirical Comparison of Supervised Learning Algorithms


http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf

An Empirical Evaluation of Supervised Learning in High Dimensions

http://lowrank.net/nikos/pubs/empirical.pdf

kaggle

XGBoost A Scalable Tree Boosting System June 02, 2016

26,599 views

→ SHARE

≡₊ SAVE


```
3. Parameter
tuning and
ensembling
                            # train xgboost
                          xgb <- xgboost(data = data.matrix(tr
                                         label = train$destina
                                         eta = 0.001,
                                         max_depth = 15,
                                         nround=25,
                                         subsample = 0.5,
                                         colsample_bytree = 0.
                                         seed = 1,
                                         eval_metric = "merror
                                         objective = "multi:so
                                         num_class = 12,
                                         nthread = 4
   2:58 / 4:06
```

What Kaggle has learned from almost a million data scientists - Anthony Goldbloom

18,153 views

Gilberto Titericz • 1st Data Scientist at NVIDIA Rapids

4mo ***

In my experience GBMs are, by far, the best for tabular structured data.

Like · CO 35 Reply

Gilberto Titericz • 1st Data Scientist at NVIDIA Rapids 4mo ***

In my experience GBMs are, by far, the best for tabular structured data.

Like · CO 35 Reply

Szilard Pafka

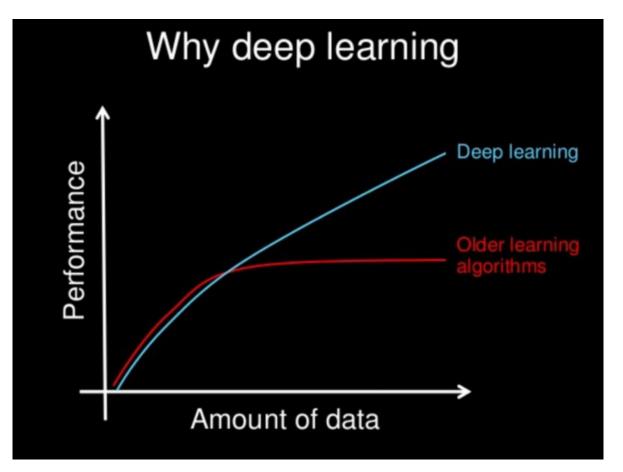
physics PhD, chief (data) scientist, meetup organizer, (visiting) professor, ... 1mo • 🕙

Best algo for tabular data? (most often)

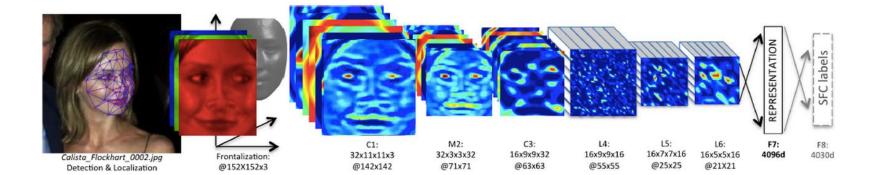
You can see how people vote. Learn more

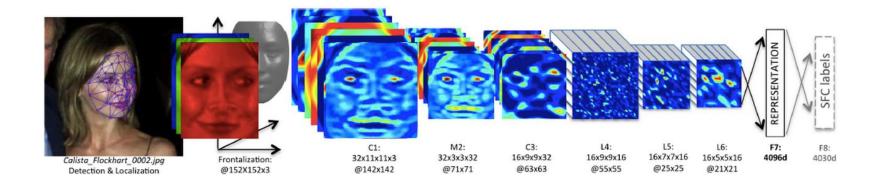
Gradient Boosted Trees

92%

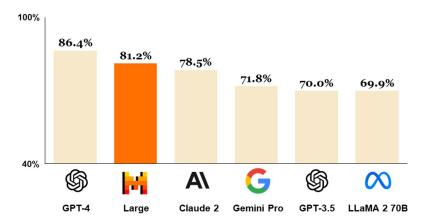

Neural Nets / Deep Learning

3%


Other


6%

72 votes · Poll closed


Source: Andrew Ng

SOpenAI

OpenAI

100%

40%

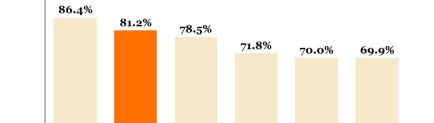
۱

GPT-4

H

Large

ChatGPT 4o V



What are the top 10 towns to visit in Tuscany, Italy?

Tuscany, Italy, is renowned for its picturesque landscapes, rich history, and cultural heritage. Here are the top 10 towns to visit in Tuscany:

- Florence (Firenze): The capital of Tuscany, known for its Renaissance art and architecture. Must-see attractions include the Uffizi Gallery, Florence Cathedral, and the Ponte Vecchio.
- Siena: Famous for its medieval cityscape, the Palio horse race, and the stunning Piazza del Campo. The Siena Cathedral is a masterpiece of Gothic architecture.
- Pisa: Home to the iconic Leaning Tower of Pisa, as well as the beautiful Piazza dei Miracoli which includes the Cathedral and the Baptistery.
- 4. Lucca: Known for its well-preserved Renaissance walls that encircle the historic city center. It offers charming streets, beautiful churches, and the Guinigi Tower.
- San Gimignano: Famous for its medieval towers and well-preserved city

Gemini Pro

(S)

GPT-3.5

LLaMA 2 70B

Google

Google

Are there any known common issues with the MacBook Air M4 13 inch?

Based on available information, the MacBook Air M4 13-inch (2025) is a highly praised ultraportable laptop, but there are a few reported issues and limitations that could be considered common or notable. These are drawn from reviews, user feedback, and technical analyses. Below is a summary of potential issues, with critical examination of the sources to ensure accuracy:

1. Thermal Throttling Due to Fanless Design

- Issue: The MacBook Air M4 lacks an active cooling fan, which can lead to thermal throttling during sustained, intensive workloads (e.g., video encoding, 3D rendering). The 13-inch model may throttle more aggressively than the 15-inch version due to a smaller heatsink. In tests like Handbrake video encoding, performance slows compared to actively cooled M4 devices (e.g., MacBook Pro).
- Impact: For most everyday tasks (web browsing, document editing, light photo editing), this
 isn't a problem. However, users running heavy CPU/GPU workloads for extended periods may
 notice reduced performance.
- Critical Note: This is a design trade-off for a silent, fanless system. It's not a defect but a limitation inherent to the Air's ultraportable ethos. Users needing sustained high performance might prefer the MacBook Pro.

Write a space shooter game in Python using the pygame framework.

Sure! Let's create a basic space shooter game using the Pygame framework in Python. This game will include a player-controlled spaceship that can move left and right and shoot bullets at incoming enemies.

First, make sure you have Pygame installed. You can install it using pip:

Here's a complete code for a basic space shooter game:

```
Copy code
import pygame
import random
pygame.init()
# Screen dimensions
WIDTH, HEIGHT = 800, 600
screen = pygame.display.set_mode((WIDTH, HEIGHT))
pygame.display.set_caption("Space Shooter")
# Colors
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
RED = (255, 0, 0)
GREEN = (0, 255, 0)
```


Write a space shooter game in Python using the pygame framework.

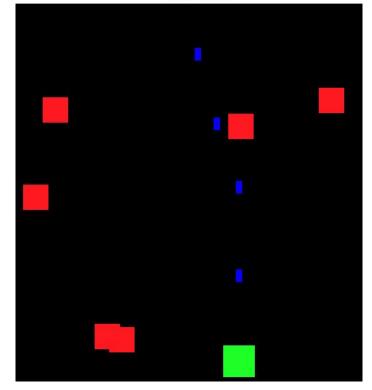
\$

Sure! Let's create a basic space shooter game using the Pygame framework in Python. This game will include a player-controlled spaceship that can move left and right and shoot bullets at incoming enemies.

First, make sure you have Pygame installed. You can install it using pip:

Here's a complete code for a basic space shooter game:

```
python


import pygame
import random

# Initialize Pygame
pygame.init()

# Screen dimensions
WIDTH, HEIGHT = 800, 600
screen = pygame.display.set_mode((WIDTH, HEIGHT))
pygame.display.set_caption("Space Shooter")

# Colors
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
RED = (255, 0, 0)
GREEN = (0, 255, 0)
```

Space Shooter

By ChatGPT ●

Drop in any files and I can help analyze and visualize your data.

By ChatGPT ●

Drop in any files and I can help analyze and visualize your data.

Plot the closing price vs time.

Here's the plot of the S&P 500 closing prices over time. If you need any further analysis or specific insights from this data, feel free to let me know! [>-]

5

It seems there might be an issue with the data rendering on the plot. I'll recheck the data and regenerate the plot.

The `Open`, `High`, `Low`, and `Close` columns are currently of type `object`. They need to be converted to numeric types for proper plotting. I'll convert these columns and regenerate the plot. [2-]

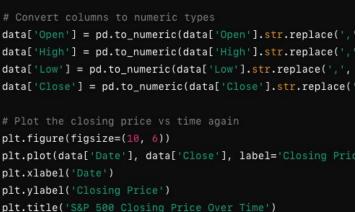
There is nothing on the plot.

It seems there might be an issue with the data rendering on the plot. I'll recheck the data and regenerate the plot.

The 'Open', 'High', 'Low', and 'Close' columns are currently of type 'object'. They need to be converted to numeric types for proper plotting. I'll convert these columns and regenerate the plot. [>-]

Analysis

Plot the closing price vs time again


plt.figure(figsize=(10, 6))

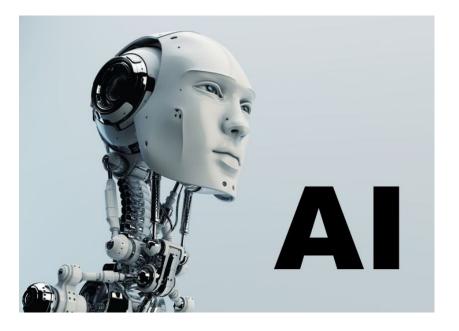
plt.ylabel('Closing Price')

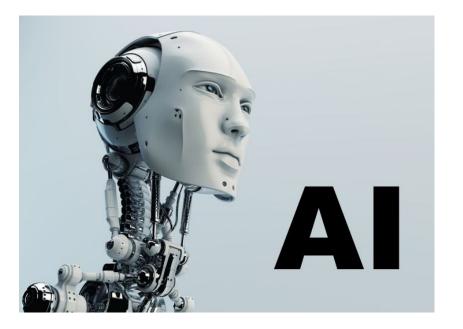
plt.xlabel('Date')

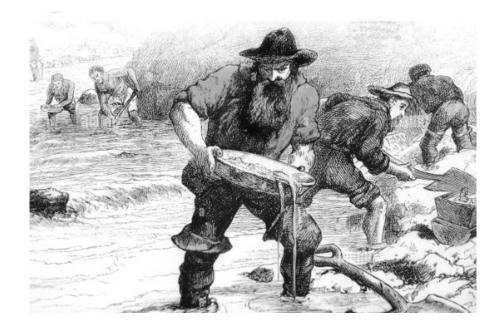
plt.legend() plt.grid(True) plt.show()

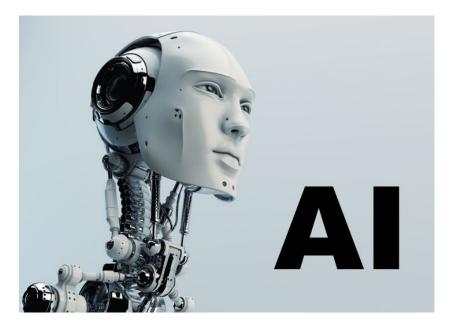
python

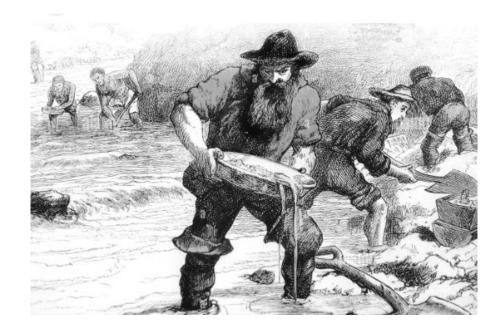
Always show details


X


们 Copy code







"a mad race to who knows what." - Joe Rogan

Params		AUC	Time (s)	Epochs	
<pre>default: activation = "Rectifier", hidden = c(2</pre>	200,200)	73.1	270	1.8	
$hidden = c(50,50,50,50), input_dropout_ratio$	= 0.2	73.2	140	2.7	
hidden = $c(50,50,50,50)$		72 2	110	19	
hidden = $c(20,20)$ hidden = $c(20)$	szilard commented Nov 27, 2015				
RectifierWithDropout, c(200,200,200 ADADELTA rho = 0.95, epsilon = 1e-6	years 2005-2006, w	hile v	alidation and are	and test s	euracy on the airline dataset (sets sampled disjunctly from a ally not encoded as ordinal va
rho = 0.999, epsilon = 1e-08		73	3.3 27	0 1	.9
adaptive = FALSE default: rate = 0.005, deca	ay = 1, momentum = 0	73	3.0 34	0 1	.1
rate = 0.001, momentum = 0.5 / 1e5 / 0.99		73	3.2 41	0 0	0.7
rate = 0.001, momentum = 0.5 / 1e5 / 0.99 rate = 0.01, momentum = 0.5 / 1e5 / 0.99			3.2 41 3.3 28		0.7
	tum = 0.5 / 1e5 / 0.99	73		0 0	0.9
rate = 0.01, momentum = 0.5 / 1e5 / 0.99		73	3.3 28	0 0	0.9

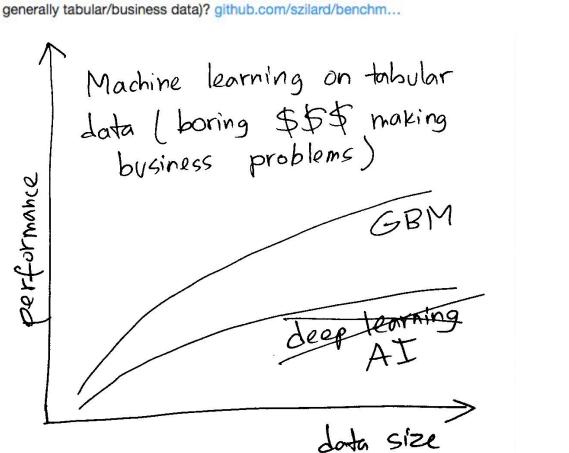
DL with h2o #28

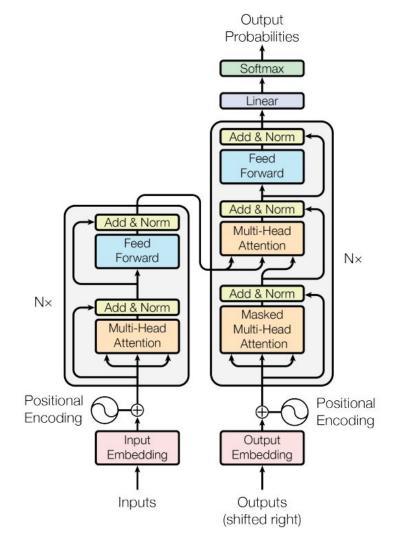
szilard commented on Nov 27, 2015

Trying to see if DL can match RF/GBM in accuracy on the airline dataset (where train is sampled from years 2005-2006, while validation and test sets sampled disjunctly from 2007). Also, some variables are kept categorical artificially and are intentionally not encoded as ordinal variables (to better match the structure of business datasets).

arnocandel commented on Nov 29, 2015

Yes, after a bit of tinkering, I also cannot get higher than 0.735 test set AUC. On my i7 5820k home PC:


system.time({


md <- h2o.deeplearning(x = Xnames, y = "dep_delayed_15min", training_frame = dx_train,

some feature engineering (e.g., cutting the original DepTime into 48 categorical half-hour slots). Out of 675 input neurons, only 2 are always populated with non-zero values (the two numeric features), and 673 values are mostly 0, only 6 categoricals are set to 1. That's where the inefficiency comes from. GBM/DRF are much more efficient at simply cutting up the feature space, which is was seems to be needed here. Best, Arno

Szilard [Deeper than Deep Learning] @DataScienceLA · 2 Nov 2016 Can anyone beat GBMs with deep learning (ahem, Al) on the airline dataset (or

MLP [188] TabTransformer [99]
DeepFM [14] NODE [6]

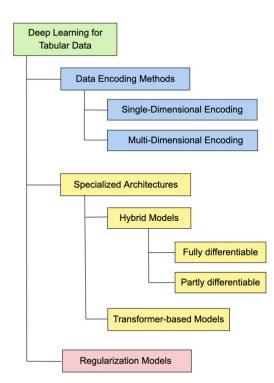
DeepGBM [52] DNFNet [43]

RLN [54] STG [189]

TabNet [5] NAM [190]

VIME [67] SAINT [9]

MLP [188] TabTransformer [99]


DeepFM [14] NODE [6]

DeepGBM [52] DNFNet [43]

RLN [54] STG [189]

TabNet [5] NAM [190]

VIME [67] SAINT [9]

MLP [188] Ta

TabTransformer [99]

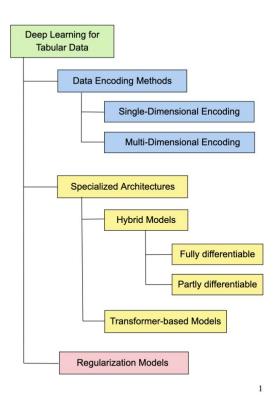
DeepFM [14]

NODE [6]

DeepGBM [52]

DNFNet [43]

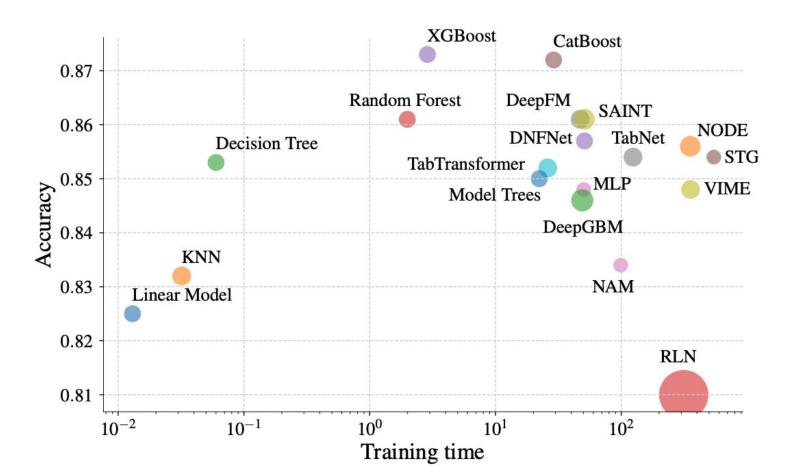
RLN [54]

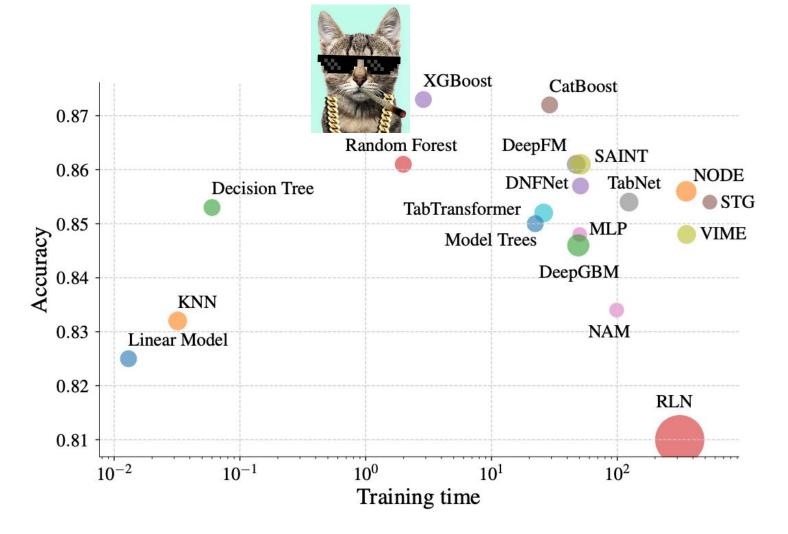

STG [189]

TabNet [5]

NAM [190]

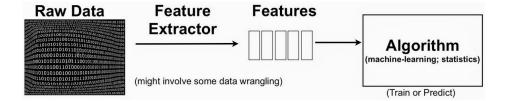
VIME [67]

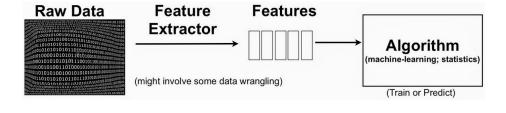

SAINT [9]

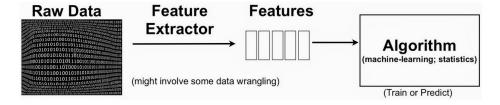


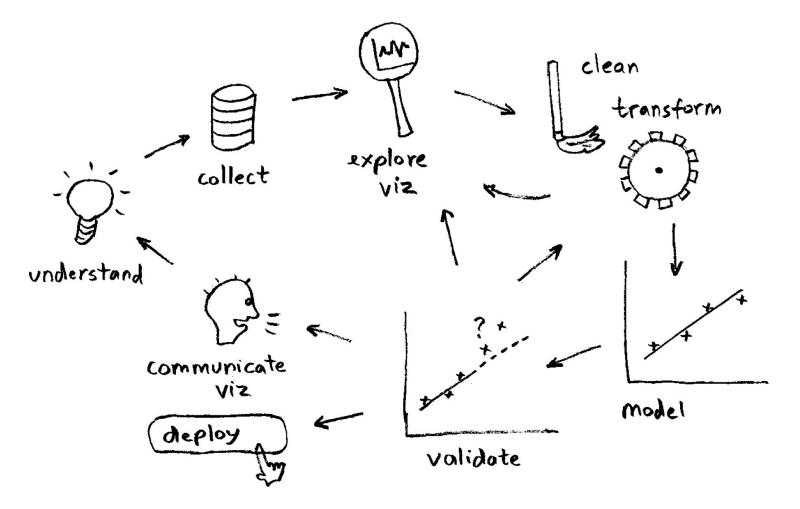
SUBMITTED TO THE IEEE, FEBRUARY 2022

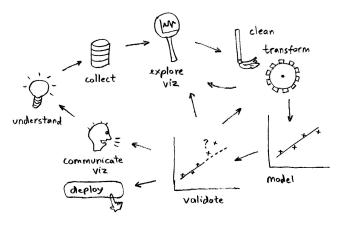
Deep Neural Networks and Tabular Data: A Survey

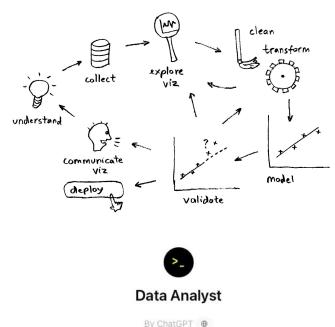

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk and Gjergji Kasneci











Data Analyst

By ChatGPT ●

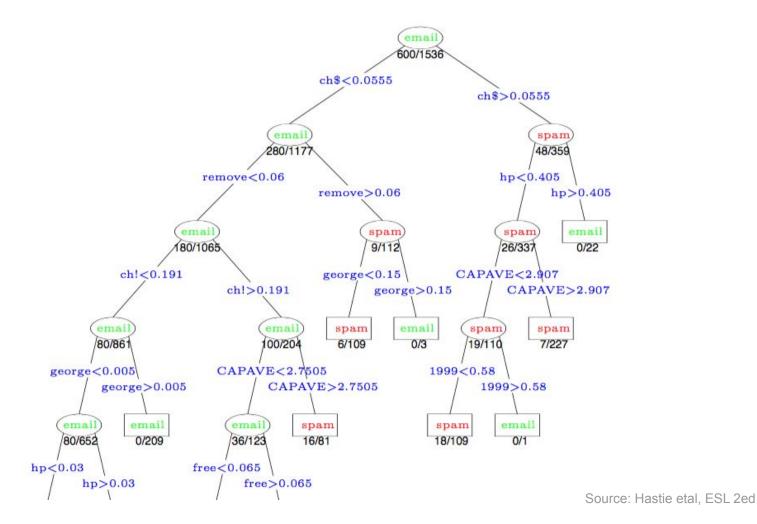
Drop in any files and I can help analyze and visualize your data.

Drop in any files and I can help analyze and visualize your data.

What are the top 3 algorithms for predictive analytics/machine learning with tabular data?

The top three algorithms for predictive analytics and machine learning with tabular data are:

1. Gradient Boosting Machines (GBM)


- Description: GBM is an ensemble learning technique that builds models sequentially, where each new model attempts to correct the errors of the previous ones. Popular implementations include XGBoost, LightGBM, and CatBoost.
- Use Cases: GBM is highly effective for regression and classification tasks. It's widely
 used in competitions and practical applications due to its high accuracy and ability to
 handle a variety of data types and structures.

2. Random Forest

- Description: Random Forest is an ensemble method that builds multiple decision trees
 and merges their results to improve accuracy and control over-fitting. Each tree is trained
 on a random subset of the data.
- Use Cases: Random Forest is robust for both classification and regression tasks. It's
 preferred for its simplicity and effectiveness, especially when dealing with large datasets
 and features.

3. Logistic Regression

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$err_m = \frac{\sum_{i=1}^{N} w_i I(y_i \neq G_m(x_i))}{\sum_{i=1}^{N} w_i}.$$

- (c) Compute $\alpha_m = \log((1 \text{err}_m)/\text{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m=1 to M:
 - (a) For $i = 1, 2, \dots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm}, j = 1, 2, ..., J_m$.
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

Trevor Hastie
Robert Tibshirani
Jerome Friedman

The Elements of
Statistical Learning
Data Mining, Inference, and Prediction

Second Edition

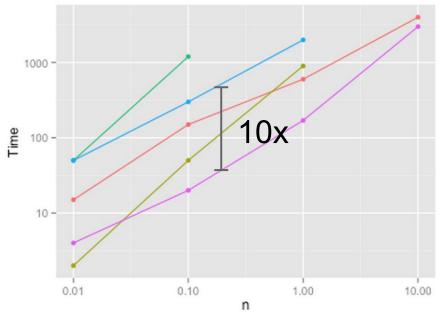
- R packages
- Python scikit-learn
- Vowpal Wabbit
- H2O
- xgboost
- Spark MLlib
- a few others

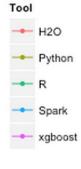
- R packages
- Python scikit-learn
- Vowpal Wabbit
- H2O
- xgboost
- Spark MLlib
- a few others

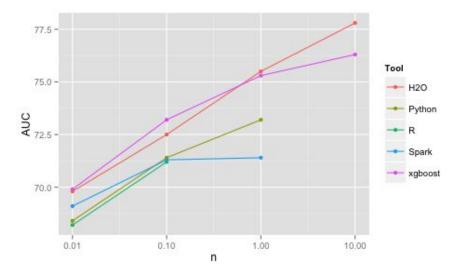
- R packages
- Python scikit-learn
- Vowpal Wabbit
- H2O
- xgboost
- Spark MLlib
- a few others

- R packages
- Python scikit-learn
- Vowpal Wabbit
- H2O
- xgboost
- Spark MLlib
- a few others

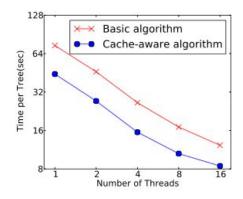
- R packages
- Python scikit-learn
- Vowpal Wabbit
- **H20**
- xgboost
- Spark MLlib
- a few others

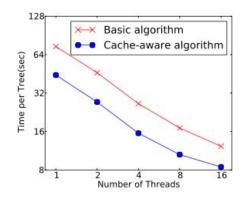

- R packages
- Python scikit-learn
- Vowpal Wabbit
- H2O
- xgboost
- Spark MLlib
- a few others




Simple/limited/incomplete benchmark

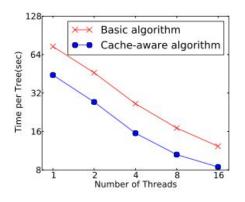
(2015-)



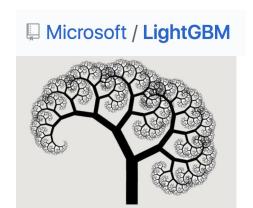

Computer Science > Learning

XGBoost: A Scalable Tree Boosting System

XGBoost: A Scalable Tree Boosting System

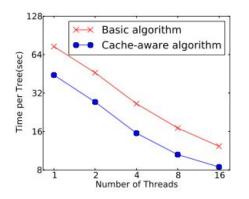


2015


arXiv.org > cs > arXiv:1603.02754

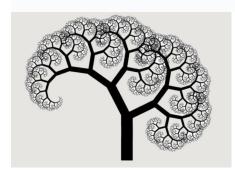
Computer Science > Learning

XGBoost: A Scalable Tree Boosting System

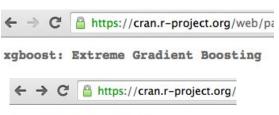


2017

arXiv.org > cs > arXiv:1603.02754


Computer Science > Learning

XGBoost: A Scalable Tree Boosting System



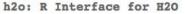
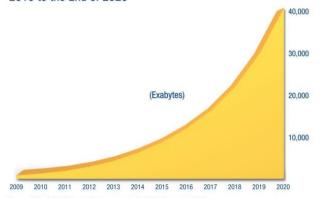
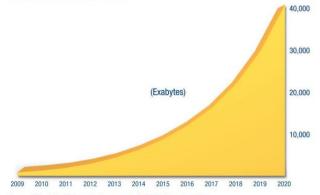



Figure 1

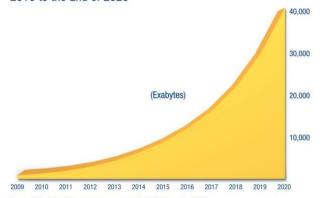

The Digital Universe: 50-fold Growth from the Beginning of 2010 to the End of 2020

Source: IDC's Digital Universe Study, sponsored by EMC, December 2012

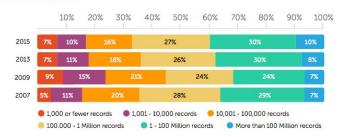
Figure 1

The Digital Universe: 50-fold Growth from the Beginning of 2010 to the End of 2020

Source: IDC's Digital Universe Study, sponsored by EMC, December 2012



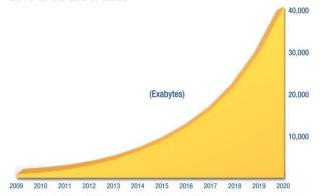
"It takes a big man to admit his data is small" — @jcheng



The Digital Universe: 50-fold Growth from the Beginning of 2010 to the End of 2020

Source: IDC's Digital Universe Study, sponsored by EMC, December 2012

TYPICAL SIZE OF DATASETS

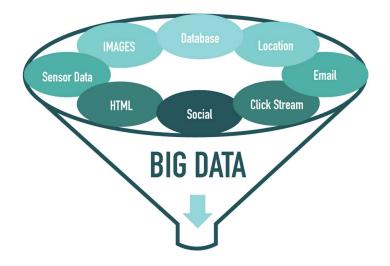


"It takes a big man to admit his data is small" — @jcheng

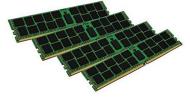
Figure 1

The Digital Universe: 50-fold Growth from the Beginning of 2010 to the End of 2020

Source: IDC's Digital Universe Study, sponsored by EMC, December 2012


TYPICAL SIZE OF DATASETS

"It takes a big man to admit his data is small" — @jcheng



Kingston Technology Value RAM 128GB Kit (4x32GB) 2133MHz DDR4 ECC Reg CL15 (KVR21R15D4K4/128)

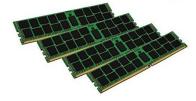
by Kingston Technology
Be the first to review this item

Was: \$743.99

Price: \$743.96 & FREE Shipping. Details

Kingston Technology Value RAM 128GB Kit (4x32GB) 2133MHz DDR4 ECC Reg CL15 (KVR21R15D4K4/128)

by Kingston Technology


Be the first to review this item

Was: \$743.99

Price: \$743.96 & FREE Shipping. Details

Model	vCP	U N	vlem	(GiB)
r3.8xlarge	32		244	(2015)
x1e.32xlarge	128	3,904		
u-12tb1.metal	448		12	(TiB)

u-12tb1.metal

Kingston Technology Value RAM 128GB Kit (4x32GB) 2133MHz DDR4 ECC Reg CL15 (KVR21R15D4K4/128)

by Kingston Technology Be the first to review this item

Was: \$743.99

Price: \$743.96 & FREE Shipping. Details

18	
r3.8xlarge 32 244	(2015)
x1e.32xlarge 128 3,904	

448

<32GB

(TiB)

Szilard [Deeper than Deep Learning] @DataScienceLA

How much RAM do you have on the server/desktop/laptop you are most commonly using to train machine learning models?

32-127 GB
128GB-1TB
>1TB

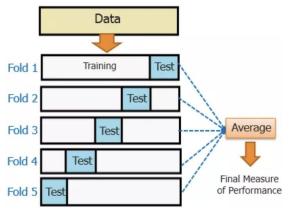
50.7%

142 votes · Final results

Szilard @DataScienceLA · Aug 3

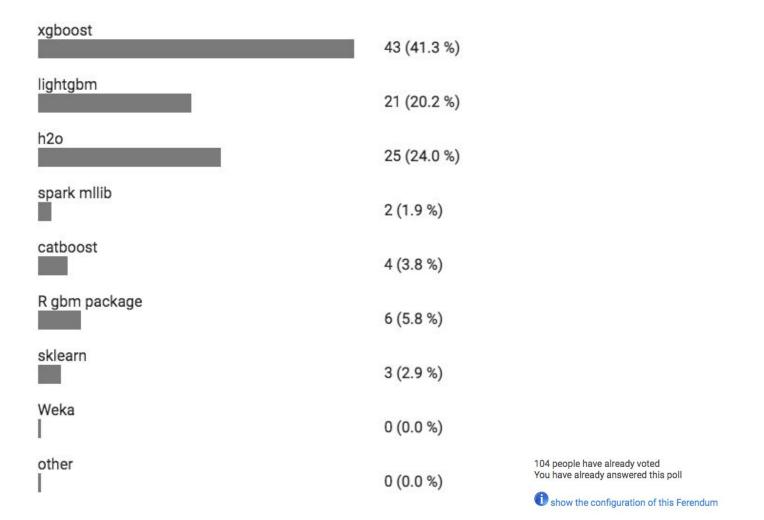
I wish my #machinelearning worked... ("both" is not a choice (a) #bigdata #datascience #rstats #pydata cc (a) @databricks (a) cloudera (a) @kaggle

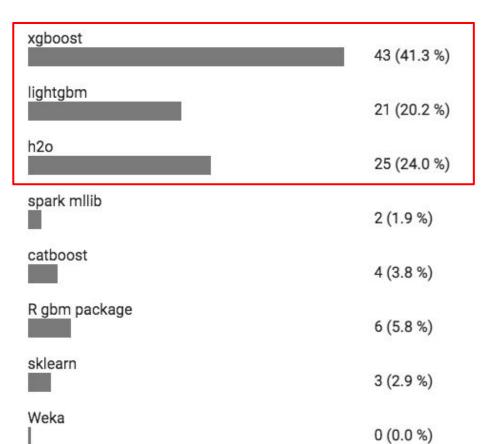
10% on 10x bigger data


70% 10x faster

20% I don't care about either

104 votes • Final results





szilard / GBM-perf

(2017-)

```
git clone https://github.com/szilard/GBM-perf.git
cd GBM-perf/cpu
sudo docker build -t gbmperf_cpu .
sudo docker run --rm gbmperf_cpu
```


other

104 people have already voted You have already answered this poll

0 (0.0 %)

What gradient boosting machine (GBM) library have you been using the most in 2020? (4 options, for others please reply to tweet)

xgboost	53.5%
lightgbm	26.7%
h2o	10.9%
catboost	8.9%

570 votes · Final results

10:59 AM · Sep 9, 2020 · Twitter Web App

2024 update: What gradient boosting machine (GBM) library have you been using the most this year?

The author can see how you vote. Learn more

The author can see how you vote. Learn mo	re		
XGBoost 🕖	61%		
LightGBM 🕖	29%		
h2o 🗸	3%		
catboost 🕢	6%		
31 votes • Poll closed		Szilard Pafka @SzilardPafka	***
		2024 update: What gradient bo been using the most this year?	oosting machine (GBM) library have you
		XGBoost	50%
		LightGBM	41.7%
		h2o	4.2%

catboost

24 votes · Final results

4.2%

r4.8xlarge (32 cores, but run on physical cores only/no hyperthreading) with software as of 2021-01-14:

Tool	Time[s] 100K	Time[s] 1M	Time[s] 10M	AUC 1M	AUC 10M
h2o	12	15	90	0.762	0.776
xgboost	0.6	3.5	40	0.748	0.754
lightgbm	2.6	4.2	20	0.765	0.792
catboost	3.8	10	80	0.734	0.735

r4.8xlarge (32 cores, but run on physical cores only/no hyperthreading) with software as of 2021-01-14:

Tool	Time[s] 100K	Time[s] 1M	Time[s] 10M	AUC 1M	AUC 10M
h2o	12	15	90	0.762	0.776
xgboost	0.6	3.5	40	0.748	0.754
lightgbm	2.6	4.2	20	0.765	0.792
catboost	3.8	10	80	0.734	0.735

p3.2xlarge (1 GPU, Tesla V100) with software as of 2021-01-15 (and CUDA 11.0):

Tool	Time[s] 100K	Time[s] 1M	Time[s] 10M	AUC 1M	AUC 10M
h2o xgboost	6.4	14	45	0.749	0.756
xgboost	3.6	6.5	11	0.748	0.756
lightgbm	7	10	42	0.767	0.792
catboost	1.8	4.6	37	0.732 ?!	0.736 ?!

100M records and RAM usage

CPU (m5.12xlarge):

Tool	time [s]	AUC	RAM train [GB]
h2o	520	0.775	8
xgboost	510	0.751	15
lightgbm	310	0.774	5
catboost	3360	0.723 ?!	140

UPDATE 2020-09-08:

Tool	time [s]	AUC	RAM train [GB]
catboost	930	0.736	50

100M records and RAM usage

GPU (Tesla V100):

Tool	time [s]	AUC	GPU mem [GB]	extra RAM [GB]
h2o xgboost	270	0.755	4	30
xgboost	80	0.756	6	0
lightgbm	400	0.774	3	6
catboost	crash (OOM)		>16	14

UPDATE 2020-09-08:

catboost still crashes out-of-memory

CPU (m5.12xlarge):

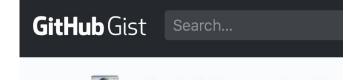
Tool	time [s]	AUC	RAM train [GB]
h2o	520	0.775	8
xgboost	510	0.751	15
lightgbm	310	0.774	5
catboost	3360	0.723 ?!	140

UPDATE 2020-09-08:

Tool	time [s]	AUC	RAM train [GB]
catboost	930	0.736	50

```
## exporting model for scoring
h2o.download_mojo(md_rf, path = "./h2o")
         ## building prediction service
```

```
# (need jetty-runner.jar ROOT.war from Steam)
java -jar jetty-runner.jar ROOT.war
curl -X POST --form mojo=@h2o_RF.zip --form jar=@h2o-genmodel.jar \
              localhost:8080/makewar > h2o_RF_M0J0.war
```



GitHub Gist Search...

szilard / h2o_scoring.R

```
## exporting model for scoring
h2o.download_mojo(md_rf, path = "./h2o")
         ## building prediction service
         # (need jetty-runner.jar ROOT.war from Steam)
         java -jar jetty-runner.jar ROOT.war
         curl -X POST --form mojo=@h2o_RF.zip --form jar=@h2o-genmodel.jar \
                        localhost:8080/makewar > h2o_RF_M0J0.war
                             ## run prediction service
                             java -jar jetty-runner.jar --port 20000 h2o_RF_MOJO.war
```


score via REST API

H₂**O**.ai

time curl "http://localhost:20000/predict?Month=c-8&DayofMonth=c-21&Day
(fast scoring needs JVM to warm up with a few requests)

```
## read CSV (e.g. data.table::fread) or get data from database (SQL connector)
## do one-hot-encoding of categorical variables (e.g. Matrix::sparse.model.matrix)
## special optimized data structure
dxgb_train <- xgb.DMatrix(data = X_train, label = y_train)</pre>
## TRAIN
md <- xgb.train(data = dxgb_train,</pre>
                objective = "binary:logistic",
                nround = 100, max_depth = 10, eta = 0.1,
                tree_method = "hist")
## SCORE
yhat <- predict(md, newdata = X_test)</pre>
```

evaluation (score distribution, ROC curve, AUC etc.)

```
h2o.gbm(x, y, training_frame, model_id, checkpoint, ignore_const_cols = TRUE,
  distribution = c("AUTO", "gaussian", "bernoulli", "multinomial", "poisson",
  "gamma", "tweedie", "laplace", "quantile", "huber"), quantile_alpha = 0.5,
 tweedie_power = 1.5, huber_alpha = 0.9, ntrees = 50, max_depth = 5,
 min_rows = 10, learn_rate = 0.1, learn_rate_annealing = 1,
  sample_rate = 1, sample_rate_per_class, col_sample_rate = 1,
  col_sample_rate_change_per_level = 1, col_sample_rate_per_tree = 1,
  nbins = 20, nbins_top_level = 1024, nbins_cats = 1024,
 validation_frame = NULL, balance_classes = FALSE, class_sampling_factors,
 max_after_balance_size = 5, seed, build_tree_one_node = FALSE,
  nfolds = 0, fold_column = NULL, fold_assignment = c("AUTO", "Random",
  "Modulo", "Stratified"), keep_cross_validation_predictions = FALSE,
  keep_cross_validation_fold_assignment = FALSE,
  score_each_iteration = FALSE, score_tree_interval = 0,
  stopping_rounds = 0, stopping_metric = c("AUTO", "deviance", "logloss",
  "MSE", "AUC", "misclassification", "mean_per_class_error"),
  stopping_tolerance = 0.001, max_runtime_secs = 0, offset_column = NULL,
 weights_column = NULL, min_split_improvement = 1e-05,
  histogram_type = c("AUTO", "UniformAdaptive", "Random", "QuantilesGlobal",
```

weights_column = NULL, min_split_improvement = 1e-05,
histogram_type = c("AUTO", "UniformAdaptive", "Random", "QuantilesGlobal",
"RoundRobin"), max_abs_leafnode_pred, pred_noise_bandwidth = 0,
categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit",
"Binary", "Eigen"))

Arno Candel in GBM, R, Technical, Tutorials | June 16, 2016

H2O GBM Tuning Tutorial for R

In this tutorial, we show how to build a well-tuned H2O GBM model for a supervised classification task. and use a small dataset to allow you to reproduce these results in a few minutes on a laptop. This script ca dreds of GBs large and H2O clusters with dozens of compute nodes.

i) machinelearningmastery.com/configure-gradient-boosting-algorithm/

Start Here

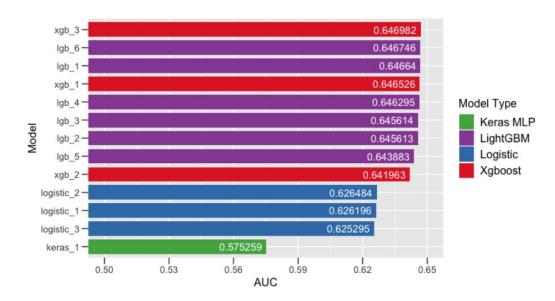
Search...

How to Configure the Gradient Boosting Algorithm

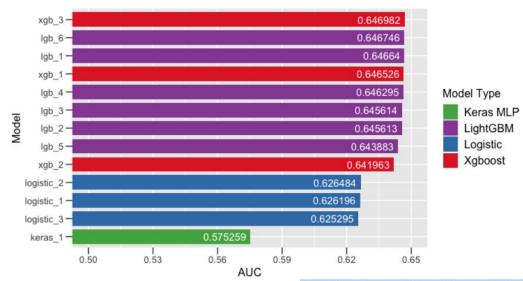
	xgboost	lightgbm	h2o	catboost
easy R install	CRAN	CRAN	java+CRAN	devtools+pre-binary
maintained	yes	yes	yes	yes
preprocessing	1-hot	1-hot/categ int	not needed	categ internal
new cats scoring	no	no	yes	no
early stopping	yes	yes	yes	yes
speed (CPU)	fastest	fastest	slow (small data)	slow
GPU supported	yes	yes	via xgboost	yes, but mem usage
speed GPU	fastest	slow	indirectly/slow	slow on larger data
REST scoring	no	no	yes	no
other algos	RF	RF	RF/GLM/NN	none
best for	Kaggle	Kaggle	prod/real-time	Kaggle

During the first two to three hours of the competition, we focused on exploratory data analysis (EDA). We first analyzed the distributions of raw features between train and test

During the first two to three hours of the competition, we focused on exploratory data analysis (EDA). We first analyzed the distributions of raw features between train and test


For model training, LightGBM is chosen as the baseline model for doing quick experiments on raw and engineered features. It turned out that our engineered features improved AUC in

During the first two to three hours of the competition, we focused on exploratory data analysis (EDA). We first analyzed the distributions of raw features between train and test


For model training, LightGBM is chosen as the baseline model for doing quick experiments on raw and engineered features. It turned out that our engineered features improved AUC in

Based on the LightGBM baseline notebook, I created other notebooks for Xgboost, Logistic Regression, Random Forests and Extra Trees models. To save some time, I ran Random

During the first two to three hours of the competition, we focused on exploratory data analysis (EDA). We first analyzed the distributions of raw features between train and test

During the first two to three hours of the competition, we focused on exploratory data analysis (EDA). We first analyzed the distributions of raw features between train and test

For blending and stacking, we looked for diverse models that perform relatively well, but are not highly correlated with each other. Xgboost and LightGBM had very similar

I have a CSV file with data on millions of credit card transactions that has as columns various input parameters (e.g. country, payment type, past spending on various timeframes etc.) and a binary output whether the transaction turned out to be fraudulent or not. I'd like to build a system that can predict the likelihood of fraud for new transactions. How would you go about it?

Thought for 10s

Awesome—this is a classic (and very high-leverage) supervised ML problem. Here's a practical, end-to-end plan I'd follow to get from raw transactions to a production fraud-risk scorer that outputs a calibrated probability for each new transaction.

1) Frame the objective

- Target: is_fraud (0/1). Predict P(fraud | transaction).
- Decision: convert probabilities to actions (approve / step-up auth / decline / send to manual review).
- Optimize for business value, not just AUC. Define costs:
 - Cost(FN) = loss on successful fraud.
 - Cost(FP) = friction/revenue loss from falsely blocking/stepping up.
 - Add capacity constraints (e.g., manual review can handle N tx/day).

2) Data splitting & leakage control (critical)

- Time-based split (train on older data → validate/test on newer). Fraud patterns drift.
- Group awareness: keep all transactions from t, ψ ame card/account/device in the same fold to

3) Data quality & preprocessing

- Handle missing values (explicit "missing" category for categoricals; simple imputation for numerics).
- Categoricals: high-cardinality (merchant_id, device_id, IP, BIN) → target/impact encoding with nested CV, or use CatBoost.
 - Rare category bucketing for very infrequent values.
 - Outliers: cap extreme numerics (winsorize) when helpful.
 - Normalization not required for tree models; useful for linear/NNs.
 - Remove/guard against data leakage features (post-transaction signals, fraud investigation flags, etc.).

4) Feature engineering (where most lift comes from)

- Velocity features (per card/account/device/IP/merchant):
 - Count/amount in last 5/15/60 minutes, 24 hours, 7/30 days.

 - Number of distinct merchants/countries/devices in short windows.
- Behavioral patterns: time-of-day, day-of-week, weekend/holiday, recency since last purchase.

6) Modeling baseline → strong learners

- Baselines: regularized logistic regression (gives fast, transparent benchmark).
- Workhorses: Gradient-boosted trees (LightGBM/XGBoost) or CatBoost (great with categoricals).
- Consider a hybrid: simple rules for known patterns (e.g., impossible geodistance) + model score.

```
dtrain <- xgb.DMatrix(X_train, label = y_train)</pre>
dval <- xgb.DMatrix(X_val, label = y_val)</pre>
param <- list(
 objective = "binary:logistic",
 eval_metric = "aucpr", # directly optimize PR-AUC proxy
  eta = 0.03,
 \max_{x \in \mathbb{R}} depth = 8,
  subsample = 0.8,
 colsample_bytree = 0.8,
  lambda = 2.0,
  alpha = 1.0,
  scale_pos_weight = scale_pos_weight,
 nthread = max(1, parallel::detectCores() - 1)
watch <- list(train = dtrain, eval = dval)</pre>
bst <- xgb.train(</pre>
 params = param, data = dtrain, nrounds = 1200,
 watchlist = watch, verbose = 0,
 early_stopping_rounds = 100
```

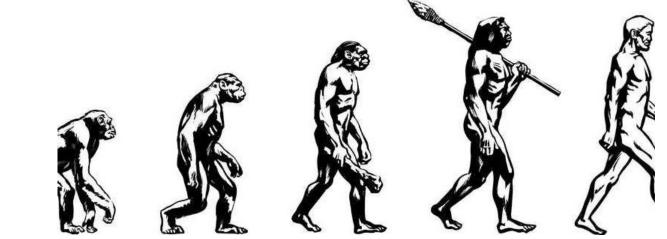
Why are you using "traditional" machine learning? Can't you use LLMs instead for better results?

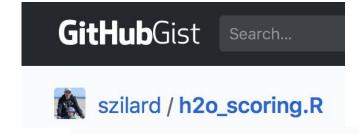
You can try to use an LLM for fraud detection, but for this kind of data—millions of structured credit card transactions with engineered numeric/categorical features—the evidence still points toward "traditional" supervised learning (GBDTs like LightGBM, XGBoost, CatBoost) being the better core choice.

What are the top 5 machine learning algorithms / implementations that would likely provide the best accuracy on tabular data such as credit card fraud? Give me a short answer.

- 1. **LightGBM** fast, memory-efficient GBDT, great for large/tabular data.
- 2. CatBoost GBDT with excellent categorical handling.
- 3. XGBoost mature, robust GBDT baseline.
- 4. Random Forest strong, stable ensemble baseline.
- 5. TabNet deep learning model for tabular data (good if mixing with embeddings).

OpenAI





More:

- szilard / benchm-ml
- ★ Star 1,203
- szilard / teach-data-science-UCLA-master-appl-stats
 - szilard / teach-ML-CEU-master-bizanalytics
- szilard / GBM-intro
 - szilard / GBM-workshop

- szilard / GBM-perf
 - szilard / GBM-tune
 - szilard / GBM-multicore

szilard / ML-scoring

in linkedin.com/in/szilard

github.com/szilard